Search results for "mechanical models"
showing 9 items of 9 documents
Modelling Polycrystalline Materials: An Overview of Three-Dimensional Grain-Scale Mechanical Models
2014
International audience; A survey of recent contributions on three-dimensional grain-scale mechanical modelling of polycrystalline materials is given in this work. The analysis of material micro-structures requires the generation of reliable micro-morphologies and affordable computational meshes as well as the description of the mechanical behavior of the elementary constituents and their interactions. The polycrystalline microstructure is characterized by the topology, morphology and crystallographic orientations of the individual grains and by the grain interfaces and microstructural defects, within the bulk grains and at the inter-granular interfaces. Their analysis has been until recentl…
Fractional multiphase hereditary materials: Mellin Transforms and Multi-Scale Fractances
2013
The rheological features of several complex organic natural tissues such as bones, muscles as well as of complex artificial polymers are well described by power-laws. Indeed, it is well-established that the time-dependence of the stress and the strain in relaxation/creep test may be well captured by power-laws with exponent β ∈ [0, 1]. In this context a generalization of linear springs and linear dashpots has been introduced in scientific literature in terms of a mechanical device dubbed spring-pot. Recently the authors introduced a mechanical analogue to spring-pot built upon a proper arrangements of springs and dashpots that results in Elasto-Viscous (EV) materials, as β ∈ [0, 1/2] and Vi…
Mechanical models of amplitude and frequency modulation
2005
This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.
The interphase finite element
2011
Mesomodelling of structures made of heterogeneous materials requires the introduction of mechanical models which are able to simulate the interactions between the adherents. Among these devices is quite popular the zero thickness interface (ZTI) model where the contact tractions and the displacement discontinuities are the primary static and kinematic variables. In some cases the joint response depends also on the internal stresses and strains within the thin layer adjacent to the joint interfaces. The interphase model, taking into account these additional variables, represents a sort of enhanced ZTI. In this paper a general theoretical formulation of the interphase model is reported and an…
A discrete mechanical model of fractional hereditary materials
2013
Fractional hereditary materials are characterized for the presence, in the stress-strain relations, of fractional-order operators with order beta a[0,1]. In Di Paola and Zingales (J. Rheol. 56(5):983-1004, 2012) exact mechanical models of such materials have been extensively discussed obtaining two intervals for beta: (i) Elasto-Viscous (EV) materials for 0a parts per thousand currency sign beta a parts per thousand currency sign1/2; (ii) Visco-Elastic (VE) materials for 1/2a parts per thousand currency sign beta a parts per thousand currency sign1. These two ranges correspond to different continuous mechanical models. In this paper a discretization scheme based upon the continuous models p…
Applications of wavelets to quantum mechanics: A pedagogical example
1995
We discuss in many details two quantum mechanical models of planar electrons which are very much related to the Fractional Quantum Hall Effect. In particular, we discuss the localization properties of the trial ground states of the models starting from considerations on the numerical results on the energy. We conclude that wavelet theory can be conveniently used in the description of the system. Finally we suggest applications of our results to the Fractional Quantum Hall Effect.
Compression forces of haptics of selected posterior chamber lenses
1997
Abstract Purpose: To compare the compressive forces of the haptics of different intraocular lens (IOL) models and analyze the observed differences. Setting: Central Hospital of Central Finland and University of Jyvaskyla, Jyvaskyla, Finland. Methods: The haptics of 28 IOL models were compressed to a diameter of 9.0 mm. The compression forces were measured at 0.5 mm intervals. The conclusions were verified by numerical simulations of mechanical models of the lenses. Results: The measured forces varied between 100 and 601 mg at a diameter of 11.0 mm, 206 and 1057 mg at a diameter of 10.0 mm, and 315 and 2094 mg at a diameter of 9.0 mm. The slopes of the force curves of the three-piece lenses …
Thermal-electrical-mechanical simulation of the nickel densification by Spark Plasma Sintering. Comparison with experiments
2016
Abstract Spark Plasma Sintering is a non-conventional process of the powder metallurgy field which uses a high electrical current to rapidly produce fully dense materials. In the present paper, a thermal-electrical-mechanical model developed on ABAQUS Software is proposed to simulate the densification of a nickel disk. A compaction model, studied in [Wolff, C., Mercier, S., Couque, H., Molinari, A., 2012. Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mechanics of Materials 49 (0), 72–91. URL http://www.sciencedirect.com/science/article/pii/S0167663611002195 ], has been used to reproduce the densification of t…
Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures
2016
The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside of the linear domain but in this case the parameters of the model depend on the stress level.